

Precision Astrometry with SIM PlanetQuest: Science and Mission Update

Michael Shao

SIM Project Scientist for Stephen Unwin

LAU General Assembly - Commission 8 Meeting August 21, 2006

National Academy of Sciences / NRC endorses SIM PlanetQuest

- Decadal (Bahcall) Review endorses SIM (1991)
 - "... would permit definitive searches for planets around nearby stars"
 - "... trigonometric distances throughout the galaxy"
 - "... would demonstrate the technology required for future missions"
- Decadal (McKee & Taylor) Review (2001)
 - "...reaffirms the 1991 NRC Committee by endorsing the completion of AIM [now called SIM]"
 - "... enable the discovery of planets much more similar to Earth in mass and orbit than those detectable now"
 - "...survey the Milky Way 1000 times more accurately than is possible now"
- CAA reaffirms scientific importance of SIM (2002)
 - "The CAA reaffirms the scientific excitement of the 2001 AASC for the important new planet-finding narrow-angle science capability of SIM."

2001 NRC Decadal Review

Astrometry with an Interferometer

Astrometric quantity is the change in delay-line position between targets

Astrometry with an Interferometer

Astrometric quantity is the change in delay-line position between targets

Overall Configuration (deployed)

SIM Planet Finding Capabilities

- Potentially Habitable Planets are defined as:
 - Terrestrial planets in the habitable zone, where $HZ = (0.7 \text{ to } 1.5)(L_{star}/L_{sun})^{0.5} \text{ AU}$
 - Mass: 0.33 M_{\oplus} to 10 M_{\oplus}
 - Radius: $0.5 R_{\oplus}$ to $2.2 R_{\oplus}$
 - Orbit: $e \le 0.35$
- Deep search of 120 nearby stars within 30 parsecs
- Based on a 5 year science mission with
 - 1 μas single measurement accuracy with
 a 1.4 μas differential measurement in ~
 20 minutes, and
 - An allocation of 17% of SIM mission observing time

planets not to scale

Planet detection with SIM - minimum masses

- For each candidate star in turn, evaluate the mimimum detectable mass within the habitable zone
- Rank-order the stars, then plot as a cumulative distribution

IAU (

Searching for Terrestrial Planets with SIM

What We Don't Know

- Are planetary systems like our own common?
- What is the distribution of planetary masses?
 - Only astrometry measures planet masses unambiguously
- Are there low-mass planets in 'habitable zone'?

A Broad Survey for Planets

- Is our solar system unusual?
- What is the range of planetary system architectures?
- Sample 2,000 stars within ~25 pc with sensitivity << Jupiter mass

A Deep Search for Earths

- Are there Earth-like (rocky) planets orbiting the nearest stars?
- Focus on ~250 stars like the Sun (F, G, K) within 10 pc
- Detection limit of $\sim 3 M_e$ at 10 pc
- Sensitivity limit of $\sim 1 M_e$ at 3 pc

Evolution of Planets

- How do systems evolve?
- Is the evolution conducive to the formation of Earth-like planets in stable orbits?
- Do multiple Jupiters form and only a few (or none) survive?

IAU General Assembly SIM PlanetQuest Michael Shao

Planets around Young Stars

- What fraction of young stars have gas-giant planets?
 - Only SIM astrometry can find planets around young stars since active stellar atmospheres and rapid rotation preclude radial velocity or transit searches
- Do gas-giant planets form at the "water-condensation" line?
 - SIM will survey ~200 stars to a level adequate to find Jovian or smaller planets on orbits <1 AU to >5 AU around stars from 25-150 pc
- Does the incidence, distribution, and orbital parameters of planets change with age and protostellar disk mass?
 - Study of clusters with ages spanning 1-100 Myr to test orbital migration theories
 - Correlate with Spitzer results on disks (at 4-24 μ m)
- Where, when, and how do terrestrial planets form?
 - Understand the formation and orbital migration mechanisms of the giant planets
- No other technique before and possibly including TPF (RV, AO imaging, IR interferometry) can credibly claim to find planets down to Saturn-Jupiter mass within 1-10 AU of parent stars at 25-150 pc

SIM PlanetQuest Science Team

Key Science Projects

Dr. Geoffrey Marcy U. California, Berkeley Planetary Systems

Dr. Michael Shao NASA/JPL Extrasolar Planets

Dr. Charles Beichman NASA/JPL Young Planetary Systems and Stars

Dr. Andrew Gould Ohio State University Astrometric Micro-Lensing

Dr. Edward Shaya U. Maryland Dynamic Observations of Galaxies

Dr. Kenneth Johnston U.S. Naval Observatory Reference Frame-Tie Objects

Dr. Brian Chaboyer Dartmouth College Population II Distances & Globular Clusters Ages

Dr. Todd Henry Georgia State University Stellar Mass-Luminosity Relation

Dr. Steven Majewski University of Virginia Measuring the Milky Way

Dr. Ann Wehrle MSC/Caltech Active Galactic Nuclei

Mission Scientists

Dr. Guy Worthey Washington State University Education & Public Outreach Scientist

Dr. Andreas Quirrenbach U. California, San Diego Data Scientist

Dr. Stuart Shaklan NASA/JPL Instrument Scientist

Dr. Shrinivas Kulkarni Caltech Interdisciplinary Scientist

Dr. Ronald Allen Space Telescope Science Inst. Synthesis Imaging Scientist

Only Principal Investigators listed. Including co-investigators the SIM Science Team has 86 members.

SIM Astrophysics

- SIM does much more than just planet finding with 60% of SIM science time for non-planetary astrophysics
- High precision astrometry applied to definitive studies of
 - Distance scale problem
 - Age scale (star clusters)
 - Mass-luminosity relation
 - Galactic structure / stellar populations / dynamics
 - Dark matter (from galaxy scale to MACHO candidates)
 - Local group dynamics / cosmology
 - AGN structure
 - Black holes, other stellar remnants, x-ray binaries
 - Establish the inertial frame 50x more precisely than ICRF
 - Target of opportunity capability
- PLUS: 1/3 of total science time *still available* for new cutting edge science goals through a Guest Observer program

SIM's Reach Extends Across our Entire Galaxy to do "Precision Astrophysics"

What makes SIM unique:

- Extreme astrometric precision
 - 4 μas (microarcsec) positions
 - 4 μas/yr proper motions
 - 1 μas differential positions
- Ability to observe faint targets
 - $-V < \sim 20$
- Flexible scheduling
 - optimize for specific science objectives

IAU General Assembly

SIM PlanetQuest

Michael Shao

August 2006 - 13

Dynamics of Galaxy Groups within 5 Mpc

Simulation from dynamical model

 Can't verify model because only 1-D velocity info is available (RV)

SIM will provide critical data for improving the models

- SIM will measure current 2-D velocities across the sky
- Models will then sample the full 6-D phase space

Simulated 'time-lapse' photo of 30 galaxies closest to our Milky Way (1-billion year exposure)

Galactic tidal tails

- Much new info on Sgr Dwarf system
 - Initial 2MASS work reveals >360deg arms
 - Radial-velocity constraints

- With only 4-D constraints, problems/contradictions remain:
 - We need all 6-D measurements
- Modeling of Sgr and Galactic halo
- Leading Arm RVs are "wrong"
- Prolate vs. Oblate ambiguity

IAU General Assembly SIM PlanetQuest August 2006 - 15

Dark Halo of our Galaxy

- 'Dwarf spheroidal' galaxy orbits the Milky Way
- Gravitational forces pull out 'tidal tails' of stars
- The orbits of these tails trace the past history of the dwarf
- They also trace the mass distribution of the Milky Way
- They are dynamically 'cold'
- SIM provides:
 - Astrometric motions of stars out to > 20 kpc
- Why SIM?
 - Need astrometric accuracy
 - and sensitivity

Simulation by Kathryn Johnston (Wesleyan University)

Probing Active Galactic Nuclei with Astrometry

- 1. Does the most compact non-thermal optical emission from an AGN come from an accretion disk or from a relativistic jet?
- 2. Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers ?
- 3. Is the separation of the radio core and optical photocenter of the quasars used for the reference frame tie stable? Or does it change on the timescales of their photometric variability?

SIM measurements:

- Flexible scheduling coordinated campaigns of flare outbursts with VLBI, X-ray telescopes
- Relative astrometry between QSO and reference stars (or other QSOs)
- Astrometric shifts as a function of wavelength
- Global astrometry: motion of QSOs relative to global reference frame
 - Departures from Hubble flow: z = 0.1, $V = 10,000 \text{ km/s} \rightarrow 6 \text{ } \mu \text{as} / \text{ yr}$

Sample 'tile' for relative astrometry

- SIM instrument field ('tile') is 15° diameter
- Select tile centers for objects of interest
- 'Virgo tile' contains:
 - -M87
 - 3C 273
 - Two ICRF quasars
 - − ~6 halo K-giants

IAU General Assembly

SIM PlanetQuest

Michael Shao

August 2006 - 18

Astrometric signatures of AGN

Expect no color shift, (or small shift ~1-5 µas) with no preferred axis. Variability has no preferred direction

Snapshot Observing Mode: "Astrometry for the masses"

- You don't need to be a black-belt astrometrist to use this mode
- Mode will deliver the "5 standard astrometric parameters":
 - Position (RA, dec), parallax, proper motion (RA, dec)
 - Accuracy \sim 10-50 µas, and magnitude range V \sim 8-17
- Large number of targets (total $\sim 20,000$)
- Available though the *Guest Observer Program* about 1/4 of SIM time

10 minutes per target, spread over 2 years; 5 visits x 2 coordinates

SIM Technology Development is Complete!

- Technology plan laid out in mid-1990s
- NASA HQ and SIM project laid out 8 Key Technology Gates in 2001
 - 4 Gates prior to Phase B start; 4 more Gates prior to Phase C/D start
- All 8 Technology Gates were completed on schedule with external peer review
- External reviewers & NASA sponsor have concurred: *Technology is complete*
- NASA & Project have established 9 Engineering milestones for Phase B/C/D

Goal-Level Performance & TRL-6 Maturity Has Been Demonstrated

